Linear Algebra & Geometry LECTURE 5

Isomorphism of fields and groups

Isomorphism

Definition.

Two algebras (X, #, *) and (Y, !, ?) are said to be *isomorphic* iff there exists a bijection $\varphi: X \to Y$ such that for every $p, q \in X, \varphi(p\#q) = \varphi(p)! \varphi(q)$ and $\varphi(p * q) = \varphi(p)? \varphi(q)$. Every such bijection is called an *isomorphism* between X and Y.

Remark. This definition can be easily adapted to algebras with fewer than two or more than two operations.

Fact.

An isomorphism preserves the "type" of the algebra. This means: if (X, #, *) and (Y, !, ?) are isomorphic and one is a field then so is the other. The same for groups, Abelian groups etc.

Outline of a proof.

An isomorphism clearly preserves commutativity and associativity of operations. It preserves the property of "being the identity element" of an operation, in the sense that if e is the identity of # then $\varphi(e)$ is the identity for !

An isomorphism preserves identity elements and preserves the property of being the inverse element (of some other element). *More precisely*:

If *e* is the identity for an operation in *X*, then $\varphi(e)$ is the identity for the corresponding operation in *Y*.

AND

If *b* is the inverse of *a* in *X*, then $\varphi(b)$ is the inverse of $\varphi(a)$ (w.r.t. the corresponding operation) in *Y*.

Proof. Suppose *e* is the identity of # in *X*. Consider $\varphi(e)$! *y* for any $y \in Y$. Since φ is a bijection there exists $x \in X$ such that $y = \varphi(x)$. Hence, $\varphi(e)$! $y = \varphi(e)$! $\varphi(x) = \varphi(e#x) = \varphi(x) = y$.

The second part: Suppose *b* is the inverse of *a*, i. e. e = b#a. Then $\varphi(e) = \varphi(b#a) = \varphi(b) ! \varphi(a)$. We already know that $\varphi(e)$ is the identity for ! in *Y*, so $\varphi(b)$ is the inverse of $\varphi(a)$. QED

The inverse function of an isomorphism φ is itself an isomorphism.

Proof.

First, we should prove that the inverse function of a bijection is itself a bijection. (*This is a fact from Set Theory. I include a proof of this and other facts about bijections at the end of this presentation*).

Next, we must prove that for every $y_1, y_2 \in Y$, $\varphi^{-1}(y_1 | y_2) = \varphi^{-1}(y_1) \# \varphi^{-1}(y_2)$. Suppose $\varphi^{-1}(y_1 | y_2) \neq \varphi^{-1}(y_1) \# \varphi^{-1}(y_2)$. Since φ is a 1-1 function applying φ to both sides yields different values, that is, $\varphi(\varphi^{-1}(y_1 | y_2)) \neq \varphi(\varphi^{-1}(y_1) \# \varphi^{-1}(y_2))$. Obviously, on the LHS we get $\varphi(\varphi^{-1}(y_1 | y_2)) = y_1 | y_2$. Since φ is an isomorphism, on the RHS we get $\varphi(\varphi^{-1}(y_1) \# \varphi^{-1}(y_2)) = \varphi(\varphi^{-1}(y_1)) ! \varphi(\varphi^{-1}(y_2)) = y_1 ! y_2$ and we obtain $y_1 ! y_2 \neq y_1 ! y_2$, which is a contradiction. QED

Comprehension.

Prove that the composition of two isomorphisms is an isomorphism too.

Examples.

- 1. Every algebra is isomorphic with itself, $\varphi = id$ can be used as an isomorphism.
- 2. $\varphi(z) = \overline{z}$ is an isomorphism of the field of \mathbb{C} with itself which is not an identity function.
- 3. Look at example 6 of a field (the one with x * y = x + y + 1and x # y = xy + x + y). Instead of two pages of calculations we can check that $\varphi(x) = x + 1$ is an isomorphism of ($\mathbb{R}, *, \#$) into $(\mathbb{R}, +, \cdot)$. Indeed, $\varphi(x * y) = \varphi(x + y + 1) = (x + y + 1)$ 1) + 1 = x + 1 + y + 1 = $\varphi(x) + \varphi(y)$ and $\varphi(x\#y) =$ $\varphi(xy + x + y) = xy + x + y + 1 = (x + 1)(y + 1).$ Incidentally, notice that in Example 6 we found out that the identity for * was -1 and $\varphi(-1) = 0$, which illustrates the last Fact. We also discovered that the identity for # was 0 which implies that the identity for multiplication should be 1, which it is. You can easily verify that inverses behave just as well.

- 4. Are fields $(\mathbb{Q}(\sqrt{2}), +, \cdot)$ and $(\mathbb{Q}, +, \cdot)$ isomorphic? Suppose they are and $\varphi: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}$ is an isomorphism. Then $\varphi(1) = 1$ because an isomorphism preserves identity elements and, consequently, $\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = 2$. But we can also write $2 = \varphi(2) = \varphi(\sqrt{2} \cdot \sqrt{2}) = \varphi(\sqrt{2})\varphi(\sqrt{2})$ - not possible because there is no number in \mathbb{Q} whose square is 2. So, the answer is NO. In a similar way one can prove that \mathbb{R} and \mathbb{C} (with the usual operations) are not isomorphic.
- 5. Group (\mathbb{R}^+, \cdot) is isomorphic to $(\mathbb{R}, +)$. Indeed, we can use any logarithmic function as an isomorphism because they are all bijections and $\log_b pq = \log_b p + \log_b q$, no matter what you use as *b*. Notice the identity in (\mathbb{R}^+, \cdot) is 1 and $\log_b 1 = 0$, which is the identity in $(\mathbb{R}, +)$. Also, for every a > 0 we have $\log_b a^{-1} = -\log_b a$, the inverse for $\log_b a$ in $(\mathbb{R}, +)$.

If $\varphi: X \to Y$ is a bijection then $\varphi^{-1}: Y \to X$ is a bijection too. **Proof**.

Suppose φ^{-1} is not 1-1. Then, there exist $y_1, y_2, y_1 \neq y_2$ such that $\varphi^{-1}(y_1) = \varphi^{-1}(y_2) = x$ for some $x \in X$. But this means that $\varphi(x) = y_1$ and $\varphi(x) = y_2$, which contradicts the definition of a function.

If φ^{-1} is not *onto* then there exists an element, say $x \in X$, such that for every $y \in Y$, $\varphi^{-1}(y) \neq x$ but this means that no value is assigned to x by φ – again, this contradicts the definition of a function.

If $\varphi: X \to Y$ and $\psi: Y \to Z$ are bijections, then $\psi \circ \varphi: X \to Z$ is a bijection.

Proof.

- 1. $\psi \circ \varphi$ is a 1-1 function. Suppose $(\psi \circ \varphi)(x_1) = (\psi \circ \varphi)(x_2)$. Then $\psi(\varphi(x_1)) = \psi(\varphi(x_2))$. Since ψ is 1-1 we get $\varphi(x_1) = \varphi(x_2)$ and, since φ is 1-1 we get $x_1 = x_2$.
- 2. $\psi \circ \varphi$ is an *onto* function. Take an element $z \in Z$. Since ψ is *onto*, there exists $y \in Y$ such that $\psi(y) = z$. Since φ is also *onto*, there exists $x \in X$ such that $\varphi(x) = y$ hence, $\psi(\varphi(x)) = z$. QED